Formation, Structure and *In Vitro* Antitumour Activity of a Novel Binuclear Organotin Complex

Lai Jin TIAN¹*, Yu Xi SUN¹, Guo Ming YANG², Bo Chu QIAN³, Zhi Cai SHANG²

¹Department of Chemistry, Qufu Normal University, Qufu 273165 ²Department of Chemistry, Zhejiang University, Hangzhou 310027 ³Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou 310013

Abstract: A 1:1 reaction of triphenyltin chloride with potassium N-[(3,5-dibromo-2-hydroxylphenyl)methylene]valinate in benzene led to the formation of a novel mixed organotin dinuclear complex, (HL)SnPh₃•Ph₂SnL [L=2-O-3,5-Br₂C₆H₃CH=NCH(*i*-Pr)COO], by means of a facile phenyl-tin bond cleavage process. In the complex, there are two distinct types of carboxylate moieties and a *trans*-O₂SnC₂N and a *trans*-O₂SnC₃ in distorted trigonal bipyramidal geometries were bridged by a carboxylate group. *In vitro* antitumor activity of the complex against three human tumour cell lines (HeLa, CoLo205 and MCF-7) was found to be much higher than *cis*-platin used in clinic.

Keywords: Binuclear tin complex, organotin carboxylate, antitumor activity, crystal structure.

In recent years, triorganotin carboxylates (R'CO₂SnR₃) have received considerable attention because of their structural diversity¹ and biological properties, particularly anti-tumour activity². In carboxylate ligand, the carboxylate oxygen atoms and the potential donor atoms (N, O, *etc.*) in R' group can be available for coordination to tin atom. The N-[(2-hydroxyaryl)alkylidene]- α -amino acid represent an interesting class of such ligands³⁻⁵. Baul *et al.*³ synthesized several triorganotin esters of N-[(2-hydroxy-aryl)alkylidene]glycine, (2-HOArCH=NCH₂COO)SnR₃, (where R = Me, Bu, Ph) by the reaction of triorganotin chloride with potassium N-[(2-hydroxyaryl)alkylidene]glycinate. The reaction of triphenyltin chloride with potassium N-[(3,5-dibromo-2-hydroxyphenyl)-

Scheme 1 Formation of complex 2

$$Ph_{3}SnCl + HLK \xrightarrow{-KCl} [(HL)SnPh_{3}] \xrightarrow{-PhH} 1$$

$$\begin{bmatrix} Ph_{2}SnL \end{bmatrix} \xrightarrow{((HL)SnPh_{3}]} (HL)SnPh_{3} \bullet Ph_{2}SnL$$

$$3 \qquad 2$$

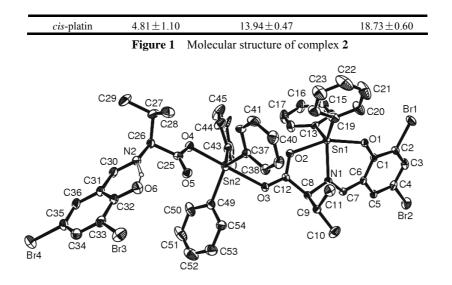
^{*} E-mail: laijintian@sohu.com

methylene]valinate (HLK) in benzene under reflux yielded a novel mixed organotin binuclear complex, (HL)SnPh₃•Ph₂SnL (**2**), which was characterized by elemental analysis, IR, NMR (1 H, 13 C and 119 Sn) spectra and X-ray diffraction⁶.

The formation of **2** was suggested in **Scheme 1**. The reaction of triphenyltin chloride with the ligand afforded triphenyltin ester **1**, and then elimination of a PhH from **1** by the cleavage of Sn–C and H–O bonds resulted the corresponding diphenyltin complex, Ph₂SnL **3**, finally, the reaction of **3** with **1** gave a novel organotin binuclear complex **2**. The Sn–Ph bond cleavage of organotin with a carboxylic acid to form an organotin carboxylate was reported^{7,8}, but the formation of organotin phenoxide by cleaving the Sn-Ph bond with phenol is uncommon. The facile Sn–C bond cleavage occurred as a result of the special electronic and steric requirements of the N-[(3,5-dibromo-2-hydroxylphenyl) methylene]valinate unit by contrast with (2-HOC₆H₄CH=NCH₂COO)SnPh₃³.

The compound **2** was a binuclear complex formed by carboxyl group bridging a triphenyltin carboxylate **1** and a diphenyltin carboxylate **3** (**Figure 1**). Each of the two tin atoms, Sn1 and Sn2, possessed five-coordination geometry in distorted trigonal bipyramidal arrangement. The Sn1 atom lay in the ligand plane and formed five-membered and six-membered chlate ring with the ligand. The two phenyl groups and the imino N1 atom occupied the equatorial positions of the trigonal bipyramid and the axial positions were taken up by a phenoxide O1 and a carboxylate oxygen O2 atom $(O1-Sn1-O2\ 156.92(16)^\circ)$. The trigonal plane of Sn2 atom was defined by the three phenyl groups. The axial position was occupied by the carbonyl oxygen O3 atom of bridging carboxylate group and the carboxylate group oxygen O4 atom of the other ligand $(O3-Sn2-O4\ 178.35(16)^\circ)$. An intramolecular O–H…N hydrogen bond was found between the uncoordinated imino N2 and the phenolic hydroxy group.

The presence of bidentate bridging carboxylate residues in organotin carboxylate structures was well established¹, however, two different diorganotin carboxylate and triorganotin carboxlate were linked *via* a bridging carboxyl group to produce a binuclear tin complex is rare. To the best of our knowledge the formation of such a novel ditin structure starting from a triorganotin precursor has no report in organotin carboxylate chemistry.


The spectral data (IR, ¹H and ¹³C NMR) of **2** agreed with its structure completely. The complex displayed two ¹¹⁹Sn resonances at -96.1 and -333.4 ppm in CDCl₃ solution, which fell well within the range of four-coordinate and five-coordinate tin centers, respectively^{3,4}.

The results of *in vitro* antitumour assay against three human tumour cell lines of **2** were shown in **Table 1**. The compound belonged to the very efficient cytostatic agents and its *in vitro* antitumour activities were more active than that of *cis*-platin used in clinic.

Table 1 In vitro antitumour activity (IC₅₀, µmol L⁻¹) of **2** and cis-platin

Compound	HeLa	CoLo205	MCF-7
2	0.096±0.035	0.288±0.027	0.209 ± 0.070

1586 Formation, Structure of a Novel Binuclear Organotin Complex

Acknowledgment

This work was supported by the Natural Science Foundation of Shandong Province (No. Z2002F01) and Qufu Normal University.

References and Note

- 1. V. Chandrasekhar, S. Nagendran, V. Baskar, Coord. Chem. Rev., 2002, 235, 1.
- 2. M. Gielen, Appl. Organomet. Chem., 2002, 16, 481.
- 3. T. S. B. Baul, S. Dutta, E. Rivarola, et al., J. Organomet. Chem., 2002, 654, 100.
- 4. H. I. Beltra, L. S. Zamudio-Rivera, T. Mancilla, et al., Chem. Eur. J., 2003, 9, 2291.
- 5. H. Yin, Q. Wang, S. Xue, J. Organomet. Chem., 2004, 689, 2480.
- 6. 2 is a yellow crystal with m.p.172-173 °C and yield is 63%. Intensity data of the complex were collected at 295 K on a Bruker Smart Apex CCD diffractometer. The crystal parameters were as follows: C₅₄H₄₈Br₄N₂O₆Sn₂, Mr = 1377.96, orthorhombic, space group P2₁2₁2₁, a = 11.7776(9), b =18.0548(14), c = 26.039(2) Å, V = 5537.0(8) Å³, Z = 4, μ = 3.836 mm⁻¹, R₁ = 0.0515, wR₂ = 0.0942. Flack x is 0.001(8). The elemental analysis, IR, NMR (¹H and ¹³C) spectra and the final coordinates, bond lengths and angles of 2 have been deposited in the editorial office of CCL.
- 7. V. Chandrasekhar, S. Nagendran, K. Gopal, et al., Chem. Commun., 2003, 862.
- 8. K. C. K. Swamy, M. A. Said, S. Nagabrahmanandachari, et al., J. Chem. Soc. Dalton Trans., 1998, 1645.

Received 1 April, 2005